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Abstract
Building on the nonequilibrium Green’s function technique and a canonical transformation of
the electron–phonon interaction, this paper focuses on the study of the Andreev reflection
conductance and the shot noise in a single quantum dot coupling with local phonon modes. The
effect of the intradot spin-flip interaction on the transport properties is considered. We pay
attention to the effects of the phonon on the Andreev reflection conductance and the shot noise.
It is found that splits due to spin-flip scattering appear not only in the main Andreev reflection
peaks but also in the new satellite peaks. The electron–phonon interaction leads to new satellite
resonant peaks that are located exactly on the integer number of the phonon frequency.
Moreover, the peak height is sensitive to the electron–phonon coupling. Even if the
electron–phonon coupling is weak, the shot noise spectrum shows the phonon mode peaks
rather clearly, but in the Andreev reflection conductance the phonon mode peaks weakly.

1. Introduction

Modern nanotechnology has provided the possibility of
fabricating nanostructures [1–4]. This has led to the
exploration of electronic devices based on a single molecule,
i.e. the single-molecule transistor (SMT), which provides
us with a controllable tool for studying fundamental physics
on the nanometer scale. It has been found that tunneling
through the SMT exhibits clear many-body correlation effects
at low temperature, for example, the Coulomb blockade and
the Kondo effects [5–9]. Since single molecules have much
smaller elastic parameters than bulk materials, it is very easy
to excite the internal vibrational degrees of freedom (phonon
modes) when electrons are incident upon the molecule through
a tunnel junction [10–13]. An important feature of the SMT
is therefore its sensitivity to local molecular vibrations, which
can have a profound impact on the transport properties. In
fact, phonon-assisted tunneling peaks or steps have been
experimentally observed in various single-molecule transistor
systems.

Vibrations may also be important in some quantum dot
(QD) systems, and consequently electron–phonon interactions
in a QD have generated a great deal of interest in recent years
as a model for SMTs. It has been experimentally demonstrated
that the low-bias conductance of molecules is dominated by

resonant tunneling through coupled electronic and vibration
levels [14].

A common geometry used for transport studies in quantum
dots consists of two leads weakly coupled to a QD via
tunneling barriers. For the past decade, spin-dependent
resonant tunneling through a QD, a small system characterized
by discrete electronic states, coupled with a ferromagnet (F)
and a superconductor (S) forming an F–QD–S system, has
been subjected to considerable experimental and theoretical
investigation [15–20]. It is found that Andreev reflection and
spin-polarized transport can occur in an F–QD–S system. Cao
et al [21] investigated the spin-dependent Andreev reflection
in an F–QD–S system, for which the spin-flip scattering
effect was considered. It is found that competition between
the intradot spin-flip scattering and the tunneling coupling
to the leads dominates the resonant behavior of the Andreev
reflection conductance versus the gate voltage. However,
effects of the phonon on Andreev reflection in an F–QD–S
system has not yet been considered.

In addition to the mean-current properties, a detailed
knowledge of transport in mesoscopic systems requires
considering the noise properties. At zero temperature the shot
noise is defined as the mean-square fluctuation of the current
flowing through a given terminal. It is of great importance and
interest because the spectrum of shot noise contains additional
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Figure 1. The quantum dot, with phonon modes and intradot
spin–orbit interaction, is coupled to ferromagnetic and
superconducting leads.

information about the interactions the conduction electrons
undergo, beyond what can be obtained from the mean-current
properties. In particular, it can be used to discern different
mechanisms resulting in the same mean current [22–26].

In this paper, on the basis of the Green’s function
technique and canonical transformation of the electron–phonon
interaction system, we study quantum transport through the
SMT, as modeled by a QD, in the presence of finite bias
and local electron–phonon interaction. Particular attention
is paid to the effect of the electron–phonon coupling on the
conductance and the shot noise.

The rest of this paper is organized as follows. In
section 2, we introduce the model Hamiltonian and derive the
formula for AR conductance and the shot noise by means of
a nonequilibrium Green’s function. In section 3, we present
the numerical results and relevant discussion. Finally, a brief
summary is given in section 4.

2. Model and formulae

As shown schematically in figure 1, our model system is a QD,
with a single electron level, coupled to phonon modes in the
QD as well as to two leads. For the sake of simplicity, with
respect to the F-lead, we restrict ourselves exclusively to the
election–phonon interaction (EPI) and the chemical potential.

The model Hamiltonian can then be expressed as

H = HF + HS + Hph + Hdot + HT . (1)

The first three terms represent the noninteracting electron
gas in the leads and the local vibration mode of the SMT,
respectively:

HF =
∑

k,σ

(εkσ + σ M) f †
kσ fkσ , (2)

HS =
∑

p,σ

εpσ S†
pσ Spσ +

∑

p

(�∗s†
p↑s†

p↓ + �sp↑s−p↓), (3)

Hph = ω0a†a, (4)

where the HF and HS are the Hamiltonians for the F-lead and
the S-lead, respectively. Under the mean-field approximation,
the F-lead is characterized by an internal magnetic moment M .
The tilt angle between the magnetic moment and the F–QD
interface has been chosen to be zero. The BCS Hamiltonian
is adopted for the S-lead with � the energy gap. Hph is the
Hamiltonian for the phonon; ω0 is the vibrational frequency
of the molecule modeled by the QD and a†(a) is the phonon
creation (annihilation) operator.

The fourth term Hdot models the QD with the electron–
phonon interaction and the intradot spin-flip scattering. Here,
we focus on the phonon mode in the transport properties and
the QD is controlled with gate voltage versus 2D electron gas:
the electron–electron interaction is neglected. We denote the
electron creation (annihilation) operators in the QD by d†

σ (dσ );
σ is the spin index; λ is the electron–phonon coupling:

Hdot = [εd d†
σ dσ + λ(a + a†)]d†d + R(d†

↑d↓ + d†
↓d↑). (5)

The spin-flip term in the Hdot comes from the spin–orbit
interaction in the QD [21, 27, 28] and R is the scattering
strength.

The last term HT describes the tunneling between the QD
and the F-lead (S-lead) with the tunneling matrix elements,
Tkσ (Tpσ ). We have assumed that the spin of the electrons is
conserved during tunneling through the two side barriers of the
QD:

HT =
∑

k,σ

(Tkσ f †
kσ dσ + H.c) +

∑

p,σ

(Tpσ s†
pσ dσ + H.c). (6)

Since we are interested in the case of strong electron–
phonon interaction, it is appropriate to eliminate the electron–
phonon coupling terms in the Hamiltonian by using a
nonperturbative canonical transformation, i.e. H = es H e−s

with S = (λ/ω0)d†
σ dσ (a† − a). The transformed Hamiltonian

is H = H ph + H el, where the phonon part remains unchanged,
while the electron part is reshaped into

H el =
∑

k,σ

(εkσ + σ M) f †
kσ fkσ +

∑

p,σ

εpσ s†
pσ spσ

+
∑

p

(�∗s†
p↑s†

−p↓ + �sp↑s−p↓)

+
∑

σ

ε̃dd†
σ dσ + R(d†

↑d↓ + d†
↑d↑)

+
∑

k,σ

(T̃kσ f †
kσ dσ + H.c.) +

∑

p,σ

(T̃pσ s†
pσ dσ + H.c). (7)

Because of the EPI, the energy level of the QD is
renormalized to ε̃d ≡ εd − gω0, where g ≡ (λ/ω0)

2, and
the dressed tunneling matrix elements are transformed into
T̃kσ ≡ Tkσ X , T̃pσ ≡ Tpσ X , where the phonon operator,
X ≡ exp[−(λ/ω0)(a† − a)], arises from the canonical
transformation of the particle operator, esde−s = dX .

However, it is a localized polaron that we are dealing with.
It is reasonable to replace the operator X with its expectation
value 〈X〉 = exp[−g(Nph + 1/2)], where Nph is the phonon
population and can be expressed as Nph = 1/[exp(βω0 − 1)],
with β = 1/kβ T . Note that this is an important approximation
made in the present paper and is valid only when the electron
hopping between the leads and the QD is small compared to
the EPI, i.e. Tkσ � λ. The tunneling terms between the QD
and the F-lead are modified by a factor X , which describes
the fact that the electron hopping is accompanied by a phonon
cloud. Here, to avoid unnecessary complication, we assume
that the leads are unaffected by the phonons. This means
that we ignore a factor that results from the average of the
X operator. This does not lead to a qualitative change in the
tunneling currents [29–31].
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The tunneling current can be expressed as [21]

J = JN + JA, (8)

with

JN = e

h

∫
dω [ fl(ω− eV )− fr(ω)]

∑

i=1,3

[Gr
d�̃s Gr

d �̃ f ]ii , (9)

and

JA = e

h

∫
dω [ fl(ω − eV ) − fr(ω + eV )]

×
j=2,4∑

i=1,3

Gr
d,i j(�̃ f Ga

d�̃ f ) j i , (10)

where fl(ω) and fr(ω) are the Fermi-distribution functions in
the left and right leads, respectively; Gr denotes the Fourier-
transformed retarded Green’s function; �̃ f is the tunneling
coupling matrix between the QD and the F-lead; JN is
the normal tunneling current which is caused by the single
quasihole transport and JA is the Andreev reflection current. In
the linear-response region, the normal tunneling conductance
and AR conductance are obtained as follows:

GN = e2

h

∫
dω [−∂ f/∂ω]

∑

i=1,3

[Gr
d�̃s Ga

d�̃ f ]ii (11)

and

GA = 2e2

h

∫
dω [−∂ f/∂ω]

j=2,4∑

i=1,3

Gr
d,i j (�̃ f Ga

d �̃ f ) j i . (12)

Since the normal linear conductance is zero (GN = 0), the
total conductance G is equivalent to GA at zero temperature.
If only the Andreev reflection is taken into account, the shot
noise spectrum has the following form [32]:

S = 8e2
∫

dE

2π
Tr {TA[ f (E − eV )(1 − f (E + eV ))

+ f (E + eV )(1 − f (E − eV ))]
− T 2

A[ f (E − eV ) − f (E + eV )]2}. (13)

In the limit of low bias and zero temperature, the shot
noise, S, simplifies into

S = 4e3V

π
Tr [TA(1 − TA)]. (14)

Here we have defined TA as the transmission coefficient matrix
and can be expressed as the following form:

TA =
⎛

⎜⎝

Gr
d,12(�̃ f Ga

d�̃ f )21 0
0 Gr

d,14(�̃ f Ga
d �̃ f )41

0 0
0 0

0 0
0 0

Gr
d,32(�̃ f Ga

d�̃ f )23 0
0 Gr

d,34(�̃ f Ga
d �̃ f )43

⎞
⎟⎠ .

(15)

Once the electron Green’s functions are known, the
conductance G and the shot noise S can be calculated by
using equations (12) and (14). In the following, we calculate
these Green functions. When the operator X is replaced by its
expectation value, the Hamiltonian equation (7) is decoupled
from the phonon operator, the original Green function for the
electron in the QD can be expressed as [31]

Gr(a)

aa′ = ∓iθ(±i)〈{d̃a(t), d̃a′(0)}〉el〈X (t)X†(0)〉ph

= G̃r(a)
aa′ (t)〈X (t)X†(0)〉ph, (16)

where d̃a(t) = eiH elt dae−iH elt and X (t) = eiH pht Xe−iH pht .
The renormalization factor is evaluated to be 〈X (t)X†(t)〉ph =
e−�(t), where

�(t) = (λ/ω0)
2[Nph(1−eiω0t )+(Nph +1)(1−e−iω0 t)]. (17)

By using the identity e−�(t) = ∞−∞Lne−inω0t , the retarded
Green’s function can be expanded as

Gr(ω) =
∞∑

n=−∞
Ln G̃r(ω − nω), (18)

where the index n stands for the number of phonons and Ln are
coefficients depending on temperature and the strength of EPI.
At finite temperature

Ln ≡ e−g(2Nph+1)enω0β/2 In2g
√

Nph(Nph + 1), (19)

where IN (Z) is the n th Bessel function of complex argument.
At zero temperature, Ln reduces to Ln ≡ 0 (n < 0) and
Ln ≡ e−g gn/n! (n � 0). With the help of the equation of
motion approach, the retarded Green’s function for the dressed
election can be evaluated analytically as

G̃r(ω) = 1

(g̃r)−1 − ̃r
, (20)

in which g̃r is the retarded Green’s function for an isolated
QD coupled with the phonon mode and ̃r is the self-energy
matrix. The matrix g̃r can be easily obtained as (δ = +i0+):

(g̃r)−1 =
⎛

⎜⎝

ω − nω0 − ε̃d + δ 0
0 ω − nω0 + ε̃d + δ

0 0
0 0

0 0
0 0

ω − nω0 − ε̃d + δ 0
0 ω − nω0 + ε̃d + δ

⎞

⎟⎠ .

(21)

For the F–QD–S system under study, ̃r can be written as
̃r = ̃R + ̃r

f + ̃r
s , where the three terms refer to the energy

contributions from intradot spin-flip and tunneling at the two
leads as outlined below. The intradot spin-flip scattering
contribution is conveniently expressed in terms of the self-
energy ̃R as

̃R =
⎛

⎜⎝

0 0 R 0
0 0 0 −R
R 0 0
0 −R 0 0

⎞

⎟⎠ , (22)

3
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Figure 2. AR conductance (a) and shot noise (b) versus the energy level of the QD, with parameter R = 0. The electron–phonon couplings
are taken to be: 0 for solid lines, 0.7ω0 for dashed lines and 0.9ω0 for dotted lines. The couplings between the QD and the leads are taken as
� f 0 = �s0 = 0.1.

where R is the scattering strength introduced above in
equation (5).

The spin-dependent coupling between the QD and the
F-lead can be described by the spin polarization P that
specifies the F-lead magnetization. The spin-up and spin-down
tunneling coupling strengths are defined as �̃ f ↑ = �̃ f 0(1 +
P) and �̃ f ↓ = �̃ f 0(1 − P). The spin-averaged coupling
strength �̃ f 0 denotes the tunneling coupling between the QD
and the F-lead without internal magnetization and is defined
by �̃ f 0 ≡ 2πρn

f |T̃kσ |2 with ρ̃n
f being the density of states for

the F-lead without magnetization. Under the wide bandwidth
approximation, the self-energy coupling to the F-lead is ̃r

f =
−(i/2)�̃ f , where �̃ f is the tunneling coupling matrix between
the QD and the F-lead and is written as

�̃ f = �̃ f 0

⎛

⎜⎝

(1 + P) 0 0 0
0 (1 − P) 0 0
0 0 (1 − P) 0
0 0 0 (1 + P)

⎞

⎟⎠ .

(23)
The self-energy, ̃r

s , takes into account the electron–
phonon interaction due to the tunneling coupling between the
QD and the S-lead, given by

̃r
s = − i

2
ρ̃r

s(ω)�̃s0

⎛
⎜⎜⎝

1 − �
ω−nω0

0 0

− �
ω−nω0

1 0 0

0 0 1 �
ω−nω0

0 0 �
ω−nω0

1

⎞
⎟⎟⎠ ,

(24)
where ρ̃r

s(ω−nω0) is the modified dimensionless BCS density
of states:

ρ̃r
s(ω − nω0) = |ω − nω0|θ(|ω − nω0| − �)√

(ω − nω0)2 − �2

+ |ω − nω0|θ(|� − ω − nω0|)√
(ω − nω0)2 − �2

, (25)

and �̃s0 = 2πρn
s |T̃pσ |2 is the tunneling coupling strength

between the QD and the S-lead. In ρ̃n
s , �̃s0 is the density of

states when the superconducting lead is in the normal state.

3. Result and discussion

In this section, we numerically study the AR conductance and
the shot noise at zero temperature. The energy level of the QD
is controlled by the gate voltage, VG, and is restricted in the
range of the energy gap of the S-lead, |−nω0 + ε̃d | < � and
|−nω0 + ε̃d ± R| < �. The Fermi energies of both the F-
lead and S-lead are set to zero; the energy gap of the S-lead,
�, is taken as the energy unit; the spin polarization is chosen
as P = 0.3 and the frequency of the phonon mode is taken as
ω0 = 0.16.

First, we take the coupling between the QD and the two
leads to be symmetric, � f 0 = �s0 = 0.1. The AR conductance
and the shot noise are plotted in figure 2. It can be seen that,
without the electron–phonon interaction, only one resonant
conductance peak shows up as the Fermi energy matches the
single level in the QD. When the electron energy matches the
local level in the QD, a perfect AR process takes place and
the value of the conductance reaches its maximum 4e2/h.
However, in the presence of electron–phonon coupling, the
overall conductance spectrum is shifted by � = λ2/ω0. As
a result, the peaks of the conductance are located at εd =
−0.08,−0.13. As the electron–phonon coupling increases, the
heights of the main peaks decrease but the heights of the new
resonant peaks increase.

In figure 2(b), the differential shot noise power exhibits
two peaks when the electron–phonon interaction is not
considered. The presence of two peaks can be explaining
as arising from the fact that no noise is generated when the
transmission probability is T = 0, or 1, while for T = 0.5,

4
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Figure 3. AR conductance (a) and shot noise (b) versus the energy level of the QD, with parameter R = 0. The couplings between the QD
and the leads are taken as � f 0 = �s0 = 0.1. The electron–phonon coupling is 0.9ω0. Insets (a) and (b) are blowups.

maximal noise is generated. When the electron–phonon
interaction is present, only one main shot noise peak appears,
whose heights decrease as the phonon–electron coupling
increases. On both sides of the main peaks, new satellite
peaks appear whose heights increase as the electron–phonon
coupling increases. We can see that the phonon peaks in shot
noise are more remarkable than those in AR conductance.

The system we are ultimately modeling is a single
molecule and it possesses much smaller elastic parameters.
Under such circumstances, phonon emission and absorption
readily occur, which lead to the appearance of satellite peaks.
However, the intensity of the satellite peaks is much smaller
than the main resonance peak because they derive from the
emission of phonon modes. The height of the main peaks of the
conductance and shot noise can be suppressed by the electron–
phonon coupling.

In order to see the phonon peaks clearly, the dotted
lines plotted in figure 2 are plotted alone in figure 3 with
solid lines. It is found that new satellite resonant peaks
appear in the curve of the conductance at εd = −� ±
nω0 (n = 1, 2, 3). For this case, λ = 0.9ω0, � =
0.13 (see the inset of figure 3(a) for clarity) phonon peaks
appear at . . . ,−0.45,−0.29, 0.03, 0.19, 0.35, etc Comparing
figure 3(b) with figure 3(a), we can see that, the phonon
peaks in the shot noise are more profound than those in the
conductance.

Take the coupling between the QD and the leads to be the
same as that in figure 2. But with stronger spin-flip scattering
R = 0.1, the curves of the conductance and the shot noise
versus the energy level of the QD εd are plotted in figure 4.
In figure 4(a), since R > �s0/2 + � f 0, the two split levels
have been separated from each other. At εd = 0, an almost
vanishing spin-dependent energies emerges. Therefore, the AR
conductance exhibits double resonant peaks.

When the electron–phonon coupling is not considered,
the spin-splitting of the main peaks appears, while the curves
for both the AR conductance and the shot noise are double
peaks. When the electron–phonon coupling is considered, the
new peaks show up on both sides of the main peaks. As the
electron–phonon coupling increases, it is interesting to show
that, in shot noise, i.e. when λ = 0.8ω0, a new peak shows up
between the main peaks.

In figure 5, the coupling between the QD and the two leads
is taken to be asymmetric with � f 0 = 0.02 and �s0 = 0.1.
Without electron–phonon coupling, the AR conductance can
reach its maximum value of 4e2/h at εd = 0, when the
appropriate spin-flip scattering R = 0.05 appears. To explain
this phenomenon, we define the ratio of the two tunneling
coupling strengths r = �s0/� f 0. The matching condition
of the Fermi velocity [33], � f ↑� f ↓, is P2 + r 2 = 1. When
� f 0 = 0.02, �s0 = 0.1, the matching of the Fermi velocity can
never be satisfied. However, intradot spin scattering may yield
an explanation. Spin-up and spin-down electrons can tunnel
from the QD to the leads, which leads to resonance broadening
of the two spin-coherent split levels by an amount �. Here
the linewidth of the split levels, � = (� f 0 + �s0), delineates
the distribution of the density of states. In figure 5, the AR
conductance behaves as a single peak resonance because the
spin-flip scattering strength is smaller than the broadening of
the split levels. Once the spin-flip scattering strength reaches
R = �s0/2, the AR conductance can reach its maximum
4e2/h.

In the presence of electron–phonon coupling, phonon
peaks appear and can be seen clearly in figures 5(c) and (d).
It is found that phonon AR conductance peaks can be observed
clearly. Correspondingly, the phonon shot noise peaks are
more obvious. As the electron–phonon coupling increases,
the splitting of the main shot noise peak decreases: when

5
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Figure 4. AR conductance (a) and shot noise (b) versus the energy level of the QD, with parameter R = 0.1. The electron–phonon couplings
are taken as 0 for solid lines, 0.6ω0 for dashed lines and 0.8ω0 for dotted lines. The couplings between the QD and the leads are taken as
� f 0 = �s0 = 0.1.

Figure 5. AR conductance (a) and shot noise (b) versus the energy level of the QD, with parameter R = 0.05. The electron–phonon couplings
are taken as 0 for solid lines, 0.5ω0 for dashed lines and 0.8ω0 for dotted lines. The couplings between the QD and the leads are taken as
� f 0 = 0.02 and �s0 = 0.1. (c) and (d) are blowups of (a) and (b), respectively.

λ = 0.8ω0, the main shot noise peaks change into a single
peak from double peaks.

The curves of the conductance and the shot noise versus
the energy level of the QD εd are plotted in figure 6,
with a stronger spin-flip scattering, R = 0.1, and an
asymmetrical coupling between the QD and the leads. In
figure 6(a), when the electron–phonon interaction does not
exist, the AR conductance appears as a symmetric double
peak resonance when the spin-flip scattering is sufficiently

enhanced, R = 0.1. In the presence of electron–phonon
coupling, the AR conductance and the shot noise varies more
complicatedly. New satellite peaks appear on both sides of the
main resonant double peaks. With increasing electron–phonon
coupling the heights of the new resonant peaks increase. In
figure 6(b), when the electron–phonon interaction does not
exist, the shot noise exhibits a resonant double peak. In
the presence of electron–phonon coupling, on both sides of
the main resonant, new double peaks emerge. The new

6
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Figure 6. AR conductance (a) and shot noise (b) versus the energy level of the QD, with parameter R = 0.1. The electron–phonon couplings
are taken as 0 for solid lines, 0.6ω0 for dashed lines and 0.8ω0 for dotted lines. The couplings between the QD and the leads are taken as
� f 0 = 0.02 and �s0 = 0.1.

Figure 7. AR conductance (a) and shot noise (b) versus the energy level of the QD, with parameter R = 0.1. The electron–phonon coupling is
0.8ω0. The couplings between the QD and the leads are taken as � f 0 = 0.02 and �s0 = 0.1. Insets (a) and (b) are blowups.

phonon peaks can be seen more clearly. Moreover, new
double resonant peaks appear in the middle of the main
resonant double peaks in both the AR conductance and the
shot noise, because the spin-flip scattering splittings take
effect on the satellite peaks resulting from the electron–
phonon interaction. The heights and the splittings of the
new resonant double peaks increase with increasing electron–
phonon coupling.

In order to show the phonon peaks more clearly, the
curves of the shot noise and the conductance (plotted with

dotted lines in figure 6) are plotted alone in figure 7. The
phonon peaks in conductance are located exactly at εd =
−� ± nω0 ± R. For this case, see the inset of figure 7(a)
for clarity. When λ = 0.8ω0, the phonon peaks are located
at . . . ,−0.322,−0.162, 0.158, 0.318, etc. The peaks due to
the spin-flip scattering appear at εd = −� ± R, that is,
−0.204, 0.004. We can also see the new double resonant peaks
clearly in the conductance and the shot noise and the splittings
of them can be seen to be more profound in the shot noise than
in the conductance.

7
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4. Conclusion

In summary, on the basis of the nonequilibrium Green’s
function method and a canonical transformation of the
electron–phonon interaction, we have studied the influence of
the electron–phonon interaction on the AR conductance and
the shot noise when electrons tunnel through a quantum dot
coupled with ferromagnetic and superconductor leads. The
intradot spin-flip interaction is also taken into account. It
is found that the AR conductance behaves as a single peak
resonance when the spin-flip scattering strength is smaller
than the broadening of the split levels. However, the AR
conductance appears as a symmetric double peak resonance
when the spin-flip scattering is sufficiently enhanced. In
the presence of the electron–phonon interaction, new satellite
resonant peaks appear and they are located exactly on the
number of the phonon frequency. Moreover, the peak height
is sensitive to the electron–phonon coupling. Even when the
electron–phonon coupling is weak, the shot noise spectrum
shows the phonon mode peaks clearly, but in AR conductance
the phonon mode peaks are very weak. Spin-flip appears not
only in the main AR peaks but also in the satellite peaks which
result from the presence of the electron–phonon interaction.
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